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20.7 Bridge over Roaring Brook. Denley Limestone of Trenton 
Group in creek bed. 

20.9 Stop. 3. Entrance to Whittaker Falls Park. Turn right. 

Nearly all of the Trenton and Black River Groups are exposed 
along Roaring Brook. In a combination of rapids, falls, and 
level stretches, the rocks are exposed in both vertical section 
and on bedding planes. A long, nearly continuous exposure 
of the Denley Limestone is the focus of our attention. 

On the basis of smaller grain size and fewer indications of 
turbulent conditions, I have assigned the Denley to a 
position further offshore than the overlying Steuben Limestone. 
The upper 50 m of the Denley contains mega-rippled and cross­
stratified grainstones interbedded with finer-grained lithologies. 
This portion of the Denley was deposited within the reach of 
storm wave base. Because the basal 9 m of the Denley lack these 
grainstones, this portion of the formation appears to have accu­
mulated below storm wave base. 

The Denley Limestone contains a diverse fauna including 
brachiopods, bryozoa, crinoids, and trilobites. Many of the 
body fossils apparent on outcrop here are fragmented, abraded, 
and occur in grainstone or packstone units. Overturned heads 
of the bryozoan Prasopora attest to disturbance and relo­
cation of many of the fossils. Figure 7 is an illustration 
of the role of turbulent events, major storms, in producing 
both the sedimentary structures and the fossil assemblages 
in the Denley. 

Not all of the fossils are reworked, however. Adhering to the 
tops of limestone beds, or entombed within centimeter thick 
shaly partings are some fossil assemblages that indicate in 
place accumulation. Evidence for in place accumulation in­
cludes lack of abrasion and fragmentation and the co-occurrence 
of fossils ranging in size from .1 to 1.5 em. In addition, 
several specimens of juvenile crinoids, complete with holdfast, 
suggest in place burial rather than transportation before 
burial. 

Trace fossils are abundant here. Palaeophycus and Chondrites 
are the most conspicuous. Again, despite the presence of 
burrows, the sedimentary fabrics of the Denley retain their 
original features. Maximum depth of burrowing is about 3 em. 

Return to park entrance and turn right onto Glendale Road. 
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Figure 7. Forming a storm deposit in the Denley Limestone. Turbulence 
of a storm suspends sediment and disarticulates fossils. 
Commonly, a graded fossiliferous packstone is formed as sedi­
ments settle from suspension, illustrated in Figure 4. De­
pending on conditions, a storm may winnow sufficient sediment 
to produce a mega-rippled grainstone or may bury a fossil 
assemblage in place. 
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30.0 Y-intersection, bear left. 

30.6 Intersection with Route 26. Turn right into village of 
Martinsburg. 

31.4 Crummy roadcut on left i s Steuben Limestone. 

33.9 Entering Lowville. Routes 12 and 26 join. Conti nue straight 
ahead on 12 and 26. 

34.5 Downtown Lowville. Turn left on Route 12. Time and temperature 
on bank on right side of road. 

35.2 Bridge over Mill Creek. Excellent exposures of Trenton 
Group. 

37.2 West Lowville. Junction with Route 177. Bear left onto 
177. We are climbing to the top of the Tug Hill Plateau. 

48.0 Crossing Deer River at New Boston. Continue straight. 

51.8 Barnes Corners. Continue straight. 

59.0 Village of Rodman. Turn right. 

59.2 Right turn onto Creek Road. 

59.6 Bridge over Gulf Stream. 

59.7 Stop . 4. Park off of road on left-hand side. 
Cut along Gulf Stream where we can examine the contact between 
the Utica Shale and the underlying Hillier Limestone of the 
Trenton Group. 

Watch out! Poison ivy is abundant and lush here, especially 
on the Utica Shale. 

This is a 13 m section that records the transition from wave 
influenced shelf to deep, anaerobic basin (Figure 8) . 
Illustrating this trend through the Hilli er Limestone is a 
decrease in grainsize, loss of mega-rippled and cross-laminated 
beds, and an increase in number and thickness of shaly part ings 
in the limestone. 

Here the transition to deeper water is marked by an increase 
in burrowing. Palaeophycus, Planolites, and Chondrites are 
present, but evidence of a bioturbating, deposit-feeding 
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Utica Shale 

conglomerate 

base of exposure 

Figure 8. Stratigraphic column of Hillier Limestone 
at Gulf Stream , Stop 4. Scale on left is in meters. 
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community is absent. Here, too, the conspicuous body fossils 
are brachiopods, bryozoa, and crinoids although the gastropod 
Liospira is locally abundant. 

The uppermost Hillier is an interesting lithology with lumpy 
nodular bedding. The fauna here includes mostly phosphatic 
forms: trilobites, conularids, and lingulids with setae pre­
served around the margin of the valves . 

The Utica Shale is a black, fissile, argil.laceous mudstone. 
Careful collecting can turn up cephalopods, graptolites, and 
the trilobite Triarthrus. 

End of trip. Reverse direction to return to Clinton. Follow 
177 to junction with Route 12. Follow Route 12 to Utica and 
New York State Thruway. Follow l2B from Utica to Clinton. 
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